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Abstract 

There are several very fast direct methods which can be used to 

sol/e the discrete Poisson equation on rectangular dcmains.    We show that 

these methods can also be used to treat problems on irregular regions. 



mmmmmmmmmemmmmf^m^^rs^ 

1.  Introduction.  Within the past few years, several very fast and accurate 

direct methods have been developed for solving finite difference approximations 

to the Poisson equation, 

Au = f      in   R , 

i u = g      on    oR .} 
These methods can usually be applied only on rectangular regions,  although the 

differential operator and boundary conditions can be more general than those in 

the Poisson equation.      In this paper, we will show how these algorithms for 

rectangular domains can also be used effectively on irregular regions.    The 

approach used is similar to that employed by Hockney [16,   17],  Buneman [7], 

and George [lh].    We also mention the work of Angel [1-h], Angel and Kalaba [5b 

Collins and Angel [9],  Kalaba [20],  end Roache [22] on the use of direct methods 

for problems in irregular regions. 

We will not discuss the details of any specific direct method.    A survey 
■ 

of these procedures is given in [11],  and in particular we cite the recent work 
I 

of Buneman [6],  B^zbee,  Golub,  and Nielson [8],   and Hockney [l6]. 

We will also not consider the derivation of the finite difference equations 

that approximate the partial differential equation.    This subject is treated in 

detail by Forsythe and Wasow [15],  and we assume that the problem has been 

reduced to finding the solution of a matrix equation   Ax = y .    The matrix   A 

is frequently very large and sparse,  but its structure does not permit the 

application of the most efficient direct methods.    For our computational procedure, 

we alter certain rows of   A   to obtain a matrix    B , and we will show how to 

define a modified right-hand side    z    so that the solution    x    also satisfies the 

equation    Ex = z   .     The matrix    B    is chosen so that these equations can be 

solved by the direct methods. 

i 
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This method is computationally advantageous when we are solving a 

sequence of equations    Ax.   = y.   .     This situation frequently arises in 

time-dependent partial differential equations,   in nonlinear problems,  and in 

linear problems where the right-hand side is varied but the region and 

differential operator remain the same.    After some initial computation,   each 

solution    x.     can be obtained in approximately twice the time required for 

the solution of an equation    Bx = z   . 

In Gections 2 and 3 we derive  this algorithm in a general form.    We 

describe a number of applications of the method in Sections h- and 5^  and in 

Section (• we present some computational results. 



2. Method ot Solution if det B ~ 0 • Suppose that we are gtven an n by n 

matrix A and an integer p with 1 ~ p ~ n • We wish to modify p rows of A . 

to obtain another matrix B. Without loss of general.i.ty we a.Ssume that the 

first p rovs of A are to be changed, since we can achieve this situation 

b;y multiplying A by a suitable permutation matrix. However 1 we emphasize 

that this multiplication should not be done expllci t~ in the ccmputation&l 

procedure. Rather, the rearrangement of raws should be done implicit~ by 

indexinB. The direct methods mentioned later in the paper require that B 

has a particular structure 1 which couid be altered by the permutation 

transformation. 

Partition A in the form 

A=(~) ' 
where ~ is a p by n matrix am A2 is an (n- p) b;y n matrix. We then 

write 

where B1 is a p by n matrix. For the remainder of this section_, we 

assume that det B ~ 0 • 

Suppose we are given a linear equation A!= l . We partition ! in 

the same 118¥ as A 1 and write 

3 
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Let  y be any vector of the form 

y = ' 

\l2/ 

If W   Is &n arbitrary nonsingular   p by p  matrix, ve define an  n by  p 

matrix  W by 

W 
W = 

0 

Define the p by p matrix C by 

C = A1B'1 W  . 

Following Hockney [l6], we call C the capacitance matrix/ Assume that there 

exists a p by 1 vector ß that is a solution to the equation 

Cß « y - A B"1^ . (1) 

Since    A    and   B    differ only in the first    p    rows,   it is easy to verify that 

a solution    x   to the equation   Ax   = y   is given by 

x = B"1^ + Wß)     . 

We first show that this method of obtaining the solution  x will be valid 

whenever the original system Ax = y   is consistent. 

Theorem.    If  aet B /? 0 , then 

det c __ CdetAjidetw} 
detB 

-    Hockney actually refers to    C as the capacitance matrix.    Since    C    may 
be singular in our development,  we have adopted the present notation. 

-    —' '  



U the !J!t• Az • 7 ia conaiatent, tben Bq. (1) is &l.so consistent. - -
~· Partiticm B-1 

in tbe tara 

were D1 ia n 'br p aD4 D2 ia n 'br (n- p) • It tben tollon tb&t 

det C • det (-'l_ D1) det W 

• det (A B-1) 4et W 

( det A)( det W) 
• detB • 

To prove the consistency atat8111!11lt1 suppose t! r • 0 • Write - -
~) , 

5 



and def'ine 8D D b7 1 veetar r b7 -

We then have 

T 

( -1) -AB ! "' = 0 - • 

I 

Since the system Ax = y ia asSUIIled to be consi:ateut, we therefore have - --T T ! ! = o 1 which ia the same as ! <z1 - ~!2> • o • But then 

• 0 I 

Vhic:h ia the consiateney condition f'or Eq. (1). 

The Woodbury f'ormula [18, pp. 123- J.a..l tor the i.Jlverae of' a •trix 

(B + F G) is 

• 

This equation baa been uaed in direct .tboda tor ao1vi!C the Poisson equation 

by George [ 14] , aDd tor the bih&rJIIcllic eqaatiaa 'b7 OolDb h5 l • It A ia DOll• 

si!J8U].ar ve write 

A = B + FG , 

6 



where r • i I &Dd G is the p by n •triJt given by 

• 

For the eue 1D vhich A is nonsiDgul&r 1 tlle algoritblll we have derived is 

eqa.ival.ent to uaiD& the Wooc!bur7 formula tor A -l • 

Suppose that we have a very etticieut method tor solving equations ot 

the tara B z = v • The solution ot the equation Ax = y then proceeds in ,_ ~ ,., ,., 

the tol..1Dir1Dc steps: 

( 1) CCIIIP'lte C • ~ B -l i , 
- -1-(2) ec.pute X • B 7 1 - -

(3) Solve the equation C! • !I. - ~! 
'l'he solution x can then be obtained tr<11 the tOl'IIIUla -

-1- -
X • B (y + W~) • - - -

- - -l-It it is possible to store the vector x &Dd the Mtrix B"" B W 1 then ..c. - -
can &lao be cc.patecl tr<11 

(2) 

(3) 

The decision whether to uae lq. (2) or Eq. (3) vaul.d be lllllde on conaideration 

ot storage requira.uts, &Dd on the relative sp eel ot solving the 87Bt• in 

lq. ( 2) veraua JIUltip~ by the Mtrix in lq. ( 3) • For probl_. ariaiD& 

trca elliptic ditterence equaticma, it is trequent:cy better to uae Bq. (2) 

becsuae B has a baDd atrueture1 but the -.trix i Jlllll' be tull.. 

The tJpe ot application ve have in mind tor this .thod is one in vbich 

we h4ve to solTe a maber ot equations A !i = !i. . In this case 1 ve cCIIIP'lte 

the capacitance -.triX aDd tactor it aa pet ot a preprocessing atap. The 

solution ot each equation A !i = !i. is then approximate:cy aa taat aa the tille 

7 
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it takes to solve two equations Bz = w . 

To be specific, let e(n) denote the number of arithmetic operations 

necessary to solve a system B z = w . Then to compute C and form its LU 

decojapositicn in a preprocessing stage requires approximately 

pe(n) + l^p n + k2p^ 

operations (cf. [19, Sec. 2.l]).    In many cases the matrix h-   is sparse, 

and this estimate is 

pe(n) + kjp3 CO 

operations.    To coorpute the solution to a particular equation Ax s y xising 

Eq.  (2) takes an additional 

.2 20(n) + l^pn + k-p* 

operations. If A_ is sparse and we let ¥ a I , this estimate can be replaced 

by 

2 
2e(n) + kgp' 

operations.    To compute a particular solution using Eq.  (3) requires 

(5) 

r 

e(n) + k,pn + kgp' (6) 

operations.    In general this estimate cannot be reduced, because the matrix 

B may be full. 



munvn 

f 

■ 

5. Method of Solution If rank(B) = n-1 . The method derived in Section 2 

gives a procedure for finding a p by 1 vector & such that a solution x 

to Ax = y also satisfies the equation 

Bx = y + 

If B is singular, it may not be possible to find such a vector 5 . To show 

T 
this, suppose B v = 0 but v / 0 . In order for 6 to exist, we must 

satisfy the consistency condition 

v ( y 
+ £ ^ e ) = 0  . 

~  i=i 1 ~1 
(7) 

T T If   v e.   = 0    for   1 < i < p    and    v y / 0 ,  it is not possible to satisfy 

Eq.  (7) •    However,  if   A    is nonsingular this difficulty does not arise, 

T T because then the only vector    v    satisfying   B v = 0   and    v e.  = 0    for 

l<i<p    is    v = 0. 

We will now describe an algorithm we have used when    rank(B) = n-1   and 

A    is nonsingular.    There are two advantages in treating this particular case. 

First,  the construction is quite simple, and it is easy to see how the method 

could be extended to a more general matrix   B .    Second,  the case   rank(B)  = n-1 

has a special significance in the solution of partial differential equations, 

because this condition is satisfied by the matrix corresponding to the 

Neumann problem.    For simplicity,  we assume that the matrix   W    of Section 2 

is the identity matrix. 

Theorem 2.      Assume that    A    is nonsingular and    rank(B)   = n-1 ,  and let    u 

T and    v   be two non-zero vectors satisfying   Bu = B v = 0  .    Then there exists an 

T integer    k   with   1 < k < p    such that    v e    / 0  .    Define a constant 

I   !■   1-    "■ 
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T      -1 
a = (v ek)       , 

and let    x    be a solution to 

Bx  = y -  (a v   y) e, 

For    1 < i < p    and    i / k    let     Ji be a solution to 

BTI.   = e.   - (a / e.) e.      , 
~x      ~i ~   ~:/ -k 

and let    TL   = u  .      Let    C    be the    p    b^;   p    matrix vhose    i-th   column is 

the vector    A, T). •    Then    C    is nonsingular^   and,   if   ß    is the solution to 

Cß = ^ - /^ x    , 

the solution x to Ax = y is given b^ 

x = x + £ ßi T]. 
1=1 

Proof.  If we partition v in the same way as y , we have 

m        m rp T1        T1 T1 T1 

A v = A v + A v  and  B v = B, v + A? v . Tnus if B v = 0 and 

v = 0 we would have A v = 0 . Since A is nonsingular and v ^ 0  this 

cannot happen, and hence v, / 0 . 

To prove that C  is nonsingular, we show that Cß = 0 implies ß = 0 . 

P 
Suppose    ß    is  an arbitrary vector such that    Cß = 0 .    Then    ^ =   E   ^i 3i 

satisfies    Ax = 0 ,   and hence    x = 0  .    This  implies that    Bx = 0 ,   or 

t  ßi~ei    =    a(.t  ßiV~    e~J~*    ' 
1 — -L i     -L 

10 
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Thus    ß.   = 0    for    1 < i < p    and    i / k ,   and the condition    x = 0    then 

implies that    ß    = 0  .    Thus    ß = 0 ,  and so    C    is nonsingular. 

Remark. As we discussed in  Section 2, the computation proceeds in the following 

steps: 

(1) Ccmpate (and factor)    C , 

(2) Compute   x , 

(3) Solve for   ß . 

The solution   x    can then be obtained from the fo^ula 

~      ~      i=i   
1 ~a 

However,  if tl e problem arises from a partial diffBrential equation,  it is more 

efficient computationally to obtain   x    in the form 

A o 
X   = X +  ß u    , 

where   x   is a solution to 

and 

Bi   = y - (a vx y) e   +   f   ß.(e. 
~       ~ ~    -   ~k      .6^    i „i 

i/k 

(a vT e )e ) 

ß = [uT x+   f   ß.  uT »        -T ^-  T    '"I 
~  ~   i=l 1 ~ 

T^ - u1 x][u   u]' 

11 
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U.   Applicatlong to Partial Differential Equations by Imbedding.    Suppose we 

are given a two-dinensional bounded regl.on  R   in the  x - y plane, and we wish 

to find a solution u to the Poisson equation, 

Au = f       in  R       , 

u = g       on  OR    , 

We assume that this differential equation is approximated by a finite differ- 

ence equation (cf. Forsythe and Waaow [13]). Thus we have a finite set of 

unknowns {U. | 1 < 1 s; n } which approximate the solution u at the grid 

points. If we denote by A. a finite difference approximation to the Laplacian 

operator A , by R. the discrete interior of the grid, and by ö R. the discrete 

boundary of the grid, then the discrete Poisson equation cai be written in the 

form 

Z^U = f   in ^   , 

U = g   on öRh  . 

Let  R/ be a discrete rectangular region such that  R. c ft/   and 

«JI^CR/UöR/ , and let   S.  = ö R.  n Rj! .    Extend the functions   f  and  g 

to the regions  R/  and  ^R.   U dR/  respectively, and consider the equation 

(8) 

V =f    * K  -* 
(9) 

U = g        on^u^R^    . 

We will solve Eq. (9), and the solution U will then also satisfy Eq. (8). 

Equation (9) Is a linear equation in the unknowns {U. jliisn}. 

Observe that we may have increased the number of unknowns by the imbedding 

process, so that tu £ n . We write Eq. (9) as a matrix equation AU = V , 

12 

i.ni.    ■■■■■i... |i|Mt>|faM,M,tM<,,MM,^<M,,,^.a|ii|,MM,<|,>a|M||MM|a<||^^^||a,M,M^<M>agiMMHMMM 



"       —■    "1 ■ mmmm wmmmmm*      l-'1111     nmvwvm" i pi  III     UJ^   i   ^mw^^^m* mmMJjmv^mi*. •■mi« 

and the matrix  A  can frequently be chosen to be block tr.'.dia^onal with 

tridiagonal matrices as the non-zero blocks (cf. [15]). 

Let   p  be the number of grid points in   3.  .    We modify the   p   rows of 

A  and  V   corresponding to the equations 

U = g on   S. 
h     » 

and replace them with the equations 

V = = f on  S. 

This defines a new matrix B and a new right-hand side V. An equation 

BU = V corresponds to the difference equation 

V = f 

U = g 

in R^ 

on ÖR^ 
(10) 

Since R/ is a rectangular region, we have very fast methods for solving 

Eq. (10). We can now apply the method of Section 2 to solve the equation 

AU = V by using the modified matrix  B . 

To illustrate this construction, let  R be a rectangular region with 

an interior rectangle removed, such as that shown in Figure 1.    For simplic- 

ity, we assume that the discrete boundary ö R.    is a subset of ö R ,    The 

imbedding rectangle is   ^ = ^ U S   U T.  .    The only function extension re- 

quired for this example is that   f be defined (arbitrarily) in  Su   U T.   . 

To define this extension, we can set   f s 0   in   SLU T. , or we can define   f 

so that it is continuous in all of  R/ .    The advantage of using R continuous 

f  is that the solution to Eq. (10) is then smooth.    However, the direct 

methods used to solve Eq. (10) are so accurate that the smoothness of the 

solution does not appear to influence the oonrputational results.    Therefore, 

i: 

L MMHMfl 



in the examples ve h&ve conaidered, we extend t b,- setting f • 0 in 

If we J.et W • I in the method of Section 21 this a.lgoritbm is closely 

connected with the discrete Green• a function for the region Bb (cf. U3 1 

pp. 3l.4-3lBl). In tact, the method is then equivalent to add1na suitable 

multipl.es of the discrete Green• s function for the points on ~ so tbat 

the bound.az7 ccm4:itions on ~ will be satisfied. Since we have Dirichlet 

bound.a.r,r ccmditicms on ~ 1 by a proper ordering of the unknowns we can write 

~=(I 0) • 

Since B is positive definite 8Dd 

C = (I I 

we see that C is &lao positive definite in this case. This is advantaceous 

because Choleslq decaaposition can then be used to caapute an LL T decomposi

tion of C (ct. [12 1 Chap. 231). 

If the grid on ~ baa B points on a side, we have n = ~. In that 

case 1 we can solve the sy-stem B U • V in approximate~ - -
8 (B) = 5 m2 lo~ B 

operations (cf. [111 p. 26o]). The preprocessing then takes 

operations ( cf. Bq. (4)). To solve Bq. (8) for a particular choice of f 

and g by usi.De Bq. (2) with W = I takes an additional 
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10N2log2N + k6p
2 

operations (cf. Eq.  (5)).    If we use Eq.  (3) to compute the solution, it 

takes an additional 

5N2log2N + ^p/* kgp2 

operations (cf. Eq. (6)). Thus if p » log^N it is faster to use Eq. (2) 

to ccnrpute the solution. We also observe that for this problem the matrix 

B"  is full [2^, p. 85], so to store B in using Eq. (3) wuuld require plr 

locations. Thus for large values of p and N it is both faster and more 

eccnondcal in terms of storage to use Eq. (2) to compute the solution to a 

particular equation. 

It should be clear that the imbedding procedure can be applied to other 

elliptic difference operators with other types of boundary conditions. To 

be a practical procedure, we simply require that we have a fast method for 

solving the imbedded problem in the rectangular region. 

As another example, consider the region shown in Figure 2. This problem 

arises in tne time-dependent study of a rotating fluid [10], and the fluid surface 

is moving slowly. We are ^i^en Dirichlet boundary data on S, , and Neumann 

boundary data on 3R - S  . The imbedding rectangle is R/ = R U S U T , and 

we use Neumann boundary conditions on OR' . Thus B corresponds to the Neumann 

problem on R' , and trie rank of B is n - 1 . The method of Section 3 can then 

be applied, and direct methods for solving the rectangular Neumann problem are 

given in [ 8 ]. 

For an example with the Poisson operator in another geometry, consider 

the region in the z-r    plane shown in Figure 3. This problem arises in the 

15 
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time-dependent study of a plasma [21],  and a Poisson equation must be solved 

at each time step.   The boundary conditions are Dirichlet on   S     and Neumam 

(1) .,(5) 
on   ÖR1

1)
   .    We use Neumann boundary conditions on   ^        and    ^ and 

n -„v /M 
/(2) „w Dirichlet boundary conditions on    dR/Vfc;    and    ^R/^''     for the imbedding 

region    ^ = ^ U S    U T    •    The elliptic difference equation in   R'    is solved 

by the method of matrix decomposition [8]. 

16 
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5.    Applications to Partial Differential Equations by Splitting.    There are 

many problems for which the imbedding approach is not an economical algorithm. 

For example. Imbedding the region in a rectangle may introduce an excessively 

large number of additional tm^nowis that are not necessary to the solution of 

the original problem.   Another instance is one in which the differential oper- 

ator or the mesh size changes in different parts of the region.   In this 

section, we give two such exaarples.   In each case, the method of Section 2 

can be used to split the problem into two rectangular problems, which can be 

solved by the usual direct methods. 

Consider the elongated L-shaped region in Figure kf and the equation 

V =f     in ^    ' 
U = g on ÖE^    . 

We assume that points on the line marked T, are all grid points. To define 

the matrix B, we replace the equations 

v = = f        on  T, 

by the equations 

U = g on T.     , 

where   g  has been (arbitrarily)  extended to  T. .    The solution of an equation 

BU = V  now consists of solving the two rectangular problems 

Vi = = f in K (i) 

U.  = g on dlC (i) 

for   i = 1 , 2 .  We can then apply the method of Section 2 to solve the original 

17 
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problem.    This algorithm is similar to one developed in [ 8, Sec. 9] for 

non-rectangular regions. 

As another example, consider the multiple-material problem shown in 

Figure 5.    The differential equation is 

and 

aix) 
a-^x) 

a2(x) 

in  R (1) 

in  R (2) 

The functions   ^(x), a2(x), and  T(y) are assumed to be smooth.    Dirichlet 

data is given on  ö R , and we require that   a -jrr   be continuous across the 

boundary between R^ '   and Ir ' .    The cooputational procedure is essentially 

the same as that for the L-shaped region.    The only difference is that in 

forming the matrix  B  we replace the equations for the continuity of  o-r^ 

across the line  T.   by the equations 

U = g on  T. 

As before, the equation BU = V corresponds to the two rectangular problems 

öu. 
^ (*iW ^) + ^ (^) IST) = **' y) in R (i) 

\ (x, y) = g(x, y)   on ö >(i) 

for i = 1, 2 . These problems can be solved directly by the method of matrix 

decomposition [ 8 , Sec. 8]. A similar method can be used for the case in 

which rCy) is only piecewise smooth. 

13 



It Is clear that this splitting method can be applied to the Poisson 

equation in regions such as that in Figure 5 when different mesh sizes are 

used in IT '   and  Ir ' .    The method developed in [ 8, Sec. 8] can also be 

adapted to include rectangular problems with irregular meshes. 

19 
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6.   Congnitatlonal Results.    In Table 1 we have tabulaued some computational 

results for two regions of the form of Figure 1.    In each case, a square 

with sides of length   1  has a symmetrically located square removed from its 

center.    For region   1  the inner square has sides of length  -*-, and for 

region 2 the inner sides are of length  -j—.    We solve the Poisson equation 

2        2 with Dirichlet boundary conditions for the function u(x , y) = x   + y    . 

This function was selected because there is no truncation error, and all of 

the measured error is due ;o inaccuracies in the solution of the difference 

equations.    All of the computations were performed on a CDC 6600 camputer. 

The iterative methods used are: 

SOR :    point successive overrelaxation [25, p. 58], 

SLQR:    successive line overrelaxation [25, p. 8o], 

ADI :    Peaceman-Rachford alternating direction implicit iteration 

[2ht chap. 61. 

The iteration parameters used are those for the imbedding rectangle   R/ , and 

for ADI the parameters for cycles of length four are calculated by the 

Wachspress algorithm [2^, Chap. 6],    The initial guess is identically zero, 

and the iterations are terminated when the maximum difference between iterates 

-5 is less than   10 ^ . 

The direct method used is variant one of the Buneman algorithm [ S , Sec. 111. 

Preprocessing times are given in Table 2,    Computational results for a similar 

problem are given in [1^3. 

The problem described in Section k for the region in Figure 2 has been 

treated by Daly and Nichol3  [10].    The mesh used has    25 x ho = 920    points. 

Using the direct method of matrix decomposition,   a particular solution requires 

about    30 - 50^    of the time required for a point Gauss-Seidel iterative procedure. 

20 



The problem discussed in Section k far the region in Figure 3 has been 

treated by Morse and Rudsinski [21 ].    The mesh used has   52 x 98 » 509^ 

points, and the preprocessing time is approocimately 150 seconds.    The region 

and differential operator are very seldom changed, so the factored capacitance 

matrix is stored on magnetic tape.    Thus there is essentially no preprocessing 

time for the execution of the program.    To solve for a particular solution 

requires about 2 seconds, which is approximately kof, of the time required for 

a successive line overrelaxation iterative procedure. 

21 
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Table 1.    Conputatlonal results for solving the discrete Poisson equation. 

Region h P Method Maximum 
Error 

Computation 
Time (Sec.) 

Scaled 
Computation 

Time 

SOB 5.02 (-6) 3.586 21.866 

1 
32 

16 SLOR 7.63 (-6) 2.65^ 16.183 

ADI 2.36 (-6) 1.126 6.878 

1 Direct 4.^ (-13) 0.161* 1.000 

SOR 8.12 (-6) 29.588 ^5.99^ 

l 
32 SLOR 7.95 (-6) 21.h2b 32.072 

ADI 5.1*1 (-6) 5.6^2 8.1^6 

Direct 1.90 (-12) 0.668 1.000 

SOR 2.35 (-6) 3.570 21.250 

i 
52 

32 STAR 6.U8(-6) 2.558 15.226 

ADI 2.11 (-6) 0.870 5.179 

2 
Direct 3.77 (-15) 0.168 1.000 

SOR 2.02 (-6) 29.631+ 10.565 

1 & SLOR 9.96 (-6) 20.510 50.162 

ADI 5.57 (-6) 5.352 7.81*1 

Direct 1.5^ (-12) 0.680 1.000 

2? 

MCJ 
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Table 2. Preprocessing time for the direct method 
results in Table 1. 

Region h Preprocessing 
Tine (Sec.) 

1 

1 
32 1.062 

1 
SIT S.ÖTO 

2 

l 
32 2.188 

1 
SIT 17.698 

25 
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